skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jannasch, Hans"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Deep (>1 km depth) scientific boreholes are unique assetsthat can be used to address a variety of microbiological, hydrologic, andbiogeochemical hypotheses. Few of these deep boreholes exist in oceaniccrust. One of them, Deep Sea Drilling Project Hole 504B, reaches∼190 ∘C at its base. We designed, fabricated, andlaboratory-tested the Multi-Temperature Fluid Sampler (MTFS), a non-gas-tight, titanium syringe-style fluid sampler for borehole applicationsthat is tolerant of such high temperatures. Each of the 12 MTFS unitscollects a single 1 L sample at a predetermined temperature, which isdefined by the trigger design and a shape memory alloy (SMA). SMAs have theinnate ability to be deformed and only return to their initial shapes whentheir activation temperatures are reached, thereby triggering a sampler at apredetermined temperature. Three SMA-based trigger mechanisms, which do notrely on electronics, were tested. Triggers were released at temperaturesspanning from 80 to 181 ∘C. The MTFS was set fordeployment on International Ocean Discovery Program Expedition 385T, buthole conditions precluded its use. The sampler is ready for use in deepoceanic or continental scientific boreholes with minimal training foroperational success. 
    more » « less
  2. Abstract Measurements of pH and nitrate from the Southern Ocean Carbon and Climate Observations and Modeling array of profiling floats were used to assess the ratios of dissolved inorganic carbon (DIC) and nitrate (NO3) uptake during the spring to summer bloom period throughout the Southern Ocean. Two hundred and forty‐three bloom periods were observed by 115 floats from 30°S to 70°S. Similar calculations were made using the Takahashi surface DIC and nitrate climatology. To separate the effects of atmospheric CO2exchange and mixing from phytoplankton uptake, the ratios of changes in DIC to nitrate of surface waters (ΔDIC/ΔNO3) were computed in the Biogeochemical Southern Ocean State Estimate (B‐SOSE) model. Phytoplankton uptake of DIC and nitrate are fixed in B‐SOSE at the Redfield Ratio (RR; 6.6 mol C/mol N). Deviations in the B‐SOSE ΔDIC/ΔNO3must be due to non‐biological effects of CO2gas exchange and mixing. ΔDIC/ΔNO3values observed by floats and in the Takahashi climatology were corrected for the non‐biological effects using B‐SOSE. The corrected, in situ biological uptake ratio (C:N) occurs at values similar to the RR, with two major exceptions. North of 40°S biological DIC uptake is observed with little or no change in nitrate giving high C:N. In the latitude band at 55°S, the Takahashi data give a low C:N value, while floats are high. This may be due to a change in CO2air‐sea exchange in this region from uptake during the Takahashi reference year of 2005 to outgassing of CO2during the years sampled by floats. 
    more » « less